Vanade Inuces Calcium Signaling, Ca^{2+} Release-Activated Ca^{2+} Channel Activation, and Gene Expression in T Lymphocytes and RBL-2H3 Mast Cells Via Thiol Oxidation

George R. Ehring, Hubert H. Kerschbaum, Christopher M. Fanger, Claudia Eder, Heiko Rauer, and Michael D. Cahalan

Using ratiometric Ca^{2+} imaging and patch-clamp measurement of Ca^{2+} channel activity, we investigated Ca^{2+} signaling induced by vanadium compounds in Jurkat T lymphocytes and rat basophilic leukemia cells. In the presence of external Ca^{2+}, vanadium compounds produced sustained or oscillatory Ca^{2+} elevations; in nominally Ca^{2+}-free medium, a transient Ca^{2+} rise was generated. Vanadate-induced Ca^{2+} signaling was blocked by heparin, a competitive inhibitor of the 1,4,5-inositol trisphosphate (IP_3) receptor, suggesting that Ca^{2+} influx is secondary to depletion of IP_3-sensitive Ca^{2+} stores. In Jurkat T cells, vanadate also activated the Ca^{2+}-dependent transcription factor, NF-AT. Intracellular dialysis with vanadate activated Ca^{2+} influx through Ca^{2+} release-activated Ca^{2+} (CRAC) channels with kinetics comparable to those of dialysis with IP_3. Neither phosphatase inhibitors nor nonhydrolyzable nucleotide analogues modified CRAC channel activation. The action of vanadate, but not IP_3, was prevented by the thiol-reducing agent DTT. In addition, the activation of CRAC channels by vanadate was mimicked by the thiol-oxidizing agent chloramine T. These results suggest that vanadate enhances Ca^{2+} signaling via thiol oxidation of a proximal element in the signal transduction cascade.

The role of Ca^{2+} signaling in the activation of T lymphocytes is well established (1, 2). Binding of the TCR to Ag associated with the MHC initiates a cascade of intracellular signaling that culminates in the production of cytokines and T cell proliferation. Among the proximal signaling steps that take place at the plasma membrane, tyrosine phosphorylation of substrates, including phospholipase C, generates two key second messengers, diacylglycerol, leading to the activation of protein kinase C, and 1,4,5-inositol trisphosphate (IP_3), leading to the initiation of the Ca^{2+} signal. The Ca^{2+} signal is sustained by the activation of a specific type of store-operated Ca^{2+} channel in the plasma membrane called the Ca^{2+} release-activated Ca^{2+} (CRAC) channel (1). Ca^{2+} signaling must be oscillatory or sustained at the level of individual cells to activate gene transcription via the NF-AT pathway, leading to cytokine production (3–5).
subunit of the insulin receptor (26–30). Recent studies have shown that concentrations of vanadium compounds that increase glucose transport and normalize blood glucose levels (21, 31, 32) also produce tyrosine phosphorylation and Ca\(^{2+}\) mobilization in Jurkat T cells (16, 17, 33) and RBL cells (18). Thus, potential actions by these compounds on the immune system must also be considered.

Previous attempts to characterize the action of vanadate on cells of the immune system have yielded conflicting results. In Jurkat T cells, pervanadate was reported to induce Ca\(^{2+}\) influx independent of store release (17). However, in RBL cells pervanadate appeared whether the normal Ca\(^{2+}\) physiological techniques. Our experiments were designed to show whether the normal Ca\(^{2+}\) signaling mechanisms used by cells of the immune system are usurped by vanadate stimulation, whether Ca\(^{2+}\) channel activation is direct or secondary to release from Ca\(^{2+}\) stores, and whether nonphysiological mechanisms are evoked.

Materials and Methods

Cell culture

The human leukemia T cell line, Jurkat E6-1, and the rat basophilic leukemia cell line, RBL-2H3, were obtained from American Type Culture Collection (Manassas, VA). Jurkat-NZ cells containing a β-galactosidase reporter gene construct (lacZ) under the control of the NF-AT promoter were derived from the Jurkat subline NZDipA.1.5.22 and have been previously described and characterized (4). Jurkat E6-1 and Jurkat-NZ cells were grown in RPMI 1640 medium containing 10% heat-inactivated FBS, 10 mM HEPES, and 2 mM glutamine. Cells were cultured in 25-ml flasks (Costar, Cambridge, MA) at 37°C in 5% CO\(_2\) in a humidified incubator. RBL cells were maintained in Eagle’s MEM supplemented with 20% FCS and 2 mM glutamine. RBL cells were plated onto glass coverslips 1–2 days before use.

Chemicals

Thapsigargin (TG) and dipotassium oxido-peroxide (pyridine-2-carboxylato) vanadate (bpV(pic)) were obtained from Alexis Biochemicals (San Diego, CA). 5′-Adenylimidodiphosphate tetrathialtium salt was obtained from Roche Molecular Biochemicals (Basel, Switzerland), and adenosine 5′-o-(3-thriptriothal) tetrathialtium salt (ATPyS) was obtained from Calbiochem (San Diego, CA). All other salts and reagents were obtained from Sigma-Aldrich (St. Louis, MO).

Calcium imaging

Jurkat T cells were loaded with 3 μM fura-2-AM (Molecular Probes, Eugene, OR) for 30–40 min at room temperature (20–25°C). The cells were then washed three times with RPMI/10% FCS. RBL cells were loaded in medium containing 1 μM fura-2-AM and 2.5 mM probenecid and returned to the incubator for an additional 30 min to complete the hydrolysis of the fura-2 ester. After fura-2 loading, all cells were stored at room temperature in the dark until use. Before imaging, media were exchanged with mammalian Ringer containing: 160 mM NaCl, 4.5 mM KCl, 2 mM CaCl\(_2\), 1 mM MgCl\(_2\), 10 mM glucose, and 10 mM HEPES (pH 7.4; osmolality, 290–310 mOsm/ kg). Illumination was provided by a xenon arc lamp (Carl Zeiss, New York, NY) and transmitted through a filter wheel unit (Lambda 10, Axon Instruments, Foster City, CA) containing 350- and 385-nm excitation filters. The filtered light was reflected by a 400-nm dichroic mirror through a >65 oil immersion objective to illuminate cells. Emitted light above 480 nm was filtered using a 400-nm dichroic mirror through a 63 oil immersion objective to collect light. Emitted light above 480 nm was received by an intensified CCD camera (C2400, Hamamatsu Photonics, Bridgewater, NJ), and the video information was relayed to an image processing system (VisibleLight, ETM Systems, Petaluma, CA). Full field-of-view 8-bit images, averaged over 16 frames, were collected at 350- and 385-nm wavelengths. Digitally stored 350/385 ratios were constructed from background-corrected 350- and 385-nm images. Single-cell measurements of [Ca\(^{2+}\)]\(_i\), were calculated from the 350/385 ratios using the equation of Grynkiewicz et al. (43) and a \(K_{d}\) of 250 nM for fura-2. The minimum 350/385 ratio was measured in single cells after incubation for 10 min in Ca\(^{2+}\)-free Ringer containing 2 mM EGTA. Maximum ratio values were obtained after perfusion with Ringer containing 10 mM Ca\(^{2+}\), 1 μM TG, and 10 μM mononycin.

Microinjection

The sodium salt of low molecular mass heparin (average m.w., 3 kDa; Sigma, St. Louis, MO) was made up to a concentration of 25 mg/ml in a 100 mM KCl solution containing 0.1% tetramethylrhodamine dextran (Molecular Probes). The heparin solution was loaded into perfusion pipettes (Femtotip, Eppendorf, Hamburg, Germany). Cell microinjection was performed using a pressure injector (model 5246, Eppendorf) and micromanipulator (model 5171, Eppendorf) as previously described (44). Microinjections were performed 2 h before the calcium imaging experiments.

Whole-cell recording

Membrane currents were measured in Jurkat T cells using the whole-cell configuration of the patch-clamp technique (45, 46). An EPC-9 amplifier (HEKA, Lambrecht, Germany) interfaced to a Macintosh Quadra 700 computer (Apple Computer, Cupertino, Calif) was used for pulse application and data recording. Membrane voltages were corrected for liquid junction potentials, and current recordings were corrected for leak and capacitative currents. Patch pipettes were pulled from Accu-fill 90 Micropet rods (Becton Dickinson, Parsippany, NJ) using a P87 micropipette puller (Sutter Instruments, Novato, CA). Pipettes were coated with Silgard (Dow Corning, Midland, MI) and heat polished to a final resistance of 2–5 MΩ. Patch-clamp experiments were performed at room temperature (20–25°C). Unless otherwise indicated the membrane currents were filtered at 1.5 kHz. Data analysis was performed using the program Pulse (HEKA, Lambrecht, Germany). During the whole-cell recordings, the membrane potential was held at 0 mV, and the Ca\(^{2+}\) current through CRAC channels was measured during 200-ms voltage ramps from −100 to +400 mV applied at 1-s intervals. The pipette solution contained 128 mM Cs\(^+\) aspartate, 12 mM bis(2-aminoimino)ethane-N,N,N,N′-tetraacetate (BAPTA), 0.9 mM CaCl\(_2\), 3.16 mM MgCl\(_2\), and 10 mM HEPES; was titrated to pH 7.2 with CsOH; and had an estimated free Ca\(^{2+}\) concentration of 10 nM. The external solution had the following composition: 150 mM NaMeSO\(_3\), 20 mM CaCl\(_2\), 2.5 mM MgCl\(_2\), 10 mM glucose, and 10 mM HEPES and was titrated to pH 7.4 with NaOH.

The lacZ reporter gene assay

The expression of lacZ was measured using a fluorescence assay as previously described (47). In brief, Jurkat-NZ cells were seeded at 1 × 10\(^5\) cells/well in 96-well plates containing culture medium alone or with addition of 1 μM TG or varying concentrations of bpV(pic), each condition in the presence or the absence of 50 nM PMA. The cells were activated in a 100-μl volume of 250 nM for fura-2. The mini-

Data analysis

Numerical values for single-cell [Ca\(^{2+}\)]\(_i\) traces were analyzed with Origin (Microcal, Northampton, MA). Statistical analysis was performed on data sets using Excel v5.0 (Microsoft, Redmond, WA). Data are reported as the mean ± SD. Multisample hypotheses were tested using a single-factor ANOVA and performing a Dunnett’s test to determine the significance of differences from control values. Data were considered statistically different at p < 0.05.

Results

The bpV(pic) activates Ca\(^{2+}\) signaling in Jurkat T lymphocytes and RBL-2H3 mast cells

Previous studies (17, 18) demonstrated that application of peroxovanadate compounds increased [Ca\(^{2+}\)]\(_i\), in both RBL cells and Jurkat T cells. However, different mechanisms have been postulated for the Ca\(^{2+}\) increase in each cell type. These differences may have been due to cell-specific effects of pervanadate or to different mixtures of peroxovanadate compounds being used each study. To test the hypothesis that peroxovanadate compounds act by a
similar mechanism on T cells and mast cells we tested the effects of the cell-permeant peroxyvanadium compound, bpV(pic) on Jurkat T cells and RBL mast cells. When exposed to bpV(pic) (200 μM) in the presence of extracellular Ca2+, most Jurkat T cells (80 ± 10%) responded after a variable delay with an abrupt increase in [Ca2+]\textsubscript{i}. In the majority of responding cells the initial rise in [Ca2+]\textsubscript{i} was followed by slow oscillations with a 73 ± 64-s period and a peak [Ca2+]\textsubscript{i} near 700 nM (Fig. 1A). The average Ca2+ response from all observed cells (Fig. 1A, bottom graph) rose smoothly from the resting level of 66 ± 41 nM to a plateau of 488 ± 210 nM. This population response reflects the asynchronous Ca2+ oscillations in single cells and the fact that the average includes nonresponding cells. Our data confirm earlier observations that peroxovanadium compounds increase [Ca2+]\textsubscript{i} in Jurkat T cells (16, 17) and reveal at the single-cell level that bpV(pic) can produce Ca2+ oscillations analogous to those produced during Ag presentation (48). Extracellular Ca2+ is required to maintain the bpV(pic)-induced oscillations, because exchanging the bath solution with nominally Ca2+-free Ringer’s solution rapidly and reversibly terminated the oscillations (Fig. 1A, application bar).

Treatment of RBL cells with pervanadate results in Ca2+ responses that vary with the peroxovanadium compounds formed in the mixture (18). Using bpV(pic), we characterized the effects of a single form of peroxovanadate on RBL cells. The average response of RBL cells to 200 μM bpV(pic) closely resembled that of the Jurkat T cells (Fig. 1B). The [Ca2+]\textsubscript{i} began to increase 200 s after the application of bpV(pic) and gradually approached a plateau of 500 ± 170 nM after an additional 1200 s. The sustained Ca2+ plateau required Ca2+ influx, because [Ca2+]\textsubscript{i} returned to baseline during perfusion with nominally Ca2+-free Ringer’s solution (Fig. 1B, application bar). Examination of the responses of individual cells revealed that RBL cells were less prone to oscillate than the Jurkat T cells and appeared to have a biphasic response to bpV(pic) consisting of an initial transient [Ca2+]\textsubscript{i} rise followed by a secondary [Ca2+]\textsubscript{i} increase to a plateau.
To assess the long term effects of vanadate treatment, we monitored transcriptional activation of the Ca\(^{2+}\)-sensitive transcription factor, NF-AT. Jurkat-NZ cells contain a reporter construct in which the \(\beta\)-galactosidase gene (\(\beta\)-gal) is driven by a triple, tandem repeat of the NF-AT binding element found in the T cell IL-2 promoter. When Jurkat-NZ cells are activated, the translocation of NF-AT to the nucleus causes a dramatic increase in \(\beta\)-galactosidase production that can be assessed by fluorogenic substrates (4).

Microinjected heparin blocks the release of Ca\(^{2+}\) from IP\(_3\)-dependent intracellular Ca\(^{2+}\) stores by bpV(pic)

If the effect of bpV(pic) on [Ca\(^{2+}\)]\(_i\) requires IP\(_3\)-evoked Ca\(^{2+}\) release, blockade of the IP\(_3\) receptor (IP\(_3\)R) with the competitive antagonist heparin (51) should prevent the action of bpV(pic). On the other hand, if vanadate directly activates Ca\(^{2+}\) influx, as suggested previously (17), heparin should be without effect. To test the efficacy of heparin microinjection, we made use of the calcium response in RBL cells produced by P2 purinergic receptor stimulation (52). RBL cells were stimulated with the P2 receptor agonist ATP (10 \(\mu\)M) in the presence and the absence of microinjected heparin.
low m.w. heparin. Fig. 4A shows that purinergic stimulation produces an abrupt rise in $[\text{Ca}^{2+}]_i$ and several oscillations before $[\text{Ca}^{2+}]_i$ returns to baseline levels. As expected, heparin-injected RBL cells (Fig. 4B) did not respond to purinergic stimulation. Stimulation by bpV(pic) was inhibited by heparin injection (Fig. 5). Both the initial Ca^{2+} transient and the delayed Ca^{2+} plateau were completely blocked. In contrast, heparin preinjection did not inhibit Ca^{2+} responses evoked by TG or ionomycin (data not shown), demonstrating that heparin did not interfere directly with CRAC channel function. Microinjection with control dextrans had no effect on the Ca^{2+} response to bpV(pic). We conclude that both transient and sustained bpV(pic)-mediated Ca^{2+} signals require IP$_3$-dependent release of Ca^{2+}.

Vanadate, bpV(pic), and IP$_3$ enhance the rate of activation of CRAC channels

In Jurkat T cells, depletion of intracellular Ca^{2+} stores results in the opening of CRAC channels and Ca^{2+} influx. During passive store depletion by intracellular dialysis with heavily buffered low Ca^{2+} solutions, an initial lag period was followed by the development of inward Ca^{2+} current through CRAC channels (Fig. 6). These currents exhibit inward rectification, voltage-independent gating, and a reversal potential beyond $+40$ mV. Inclusion of bpV(pic) in the pipette solution accelerated the activation of the CRAC currents without altering their rectification or reversal potential (Fig. 6). Using the amplitude of the current at -80 mV, we compared the effects of bpV(pic) and vanadate with that of IP$_3$ on the activation of CRAC currents (Fig. 7). When the channels were activated by passive store depletion alone, the current reached its maximum (-1.18 ± 0.6 pA/pF) within 260 s ($t_{1/2} = 122 \pm 48$ s; Fig. 7A and Table I). Addition of IP$_3$ (10 μM) to the intracellular

FIGURE 6. The bpV(pic) accelerates activation of CRAC channels in Jurkat T cells. Whole-cell patch clamp recordings of Ca^{2+} currents through CRAC channels were made during passive store depletion alone (A) or during intracellular dialysis with 10 μM bpV(pic) (B). Voltage clamp protocol: 200-ms ramps from -120 to $+40$ mV were taken from a holding potential of 0 mV at intervals of 1 s. Currents during ramps taken before CRAC current induction and after maximal activation are shown. Currents from the first five ramps obtained after beginning whole-cell recording were averaged, and the average was subtracted from the remaining records to eliminate leak currents. The time after establishing the whole-cell patch clamp configuration is indicated to the left of each current-voltage plot.

FIGURE 7. Time course of CRAC current activation. Whole-cell recordings of Ca^{2+} currents through CRAC channels were made in Jurkat T cells during passive store depletion (A) or during intracellular dialysis with 10 μM IP$_3$ (B), 10 μM Na$_3$VO$_4$ (C), or 10 μM bpV(pic) (D). Currents were recorded as described in Fig. 6, and the CRAC current density at -80 mV is shown from time that the whole-cell patch clamp configuration was established ($t = 0$).
solution accelerated activation of the CRAC current, reducing the \(t_{1/2} \) of activation to 14 ± 7 s, but did not alter the final amplitude of the current (Fig. 7B and Table I). Dialysis of the cell with solutions containing bpV(pic) or \(\text{Na}_3\text{VO}_4 \) (10 \(\mu \)M) also accelerated the activation of CRAC channels (Fig. 7, C and D) reducing the \(t_{1/2} \) to 14 ± 5 and 29 ± 18 s, respectively. Thus, the enhanced rate of activation of CRAC currents by \(\text{Na}_3\text{VO}_4 \) and bpV(pic) mimicked the well-studied effects of IP\(_3\) on CRAC currents.

The effect of \(\text{Na}_3\text{VO}_4 \) on the rate of CRAC channel activation does not require ATP

The actions of \(\text{Na}_3\text{VO}_4 \) and bpV(pic) on CRAC channels could result from increased tyrosine phosphorylation secondary to phosphatase inhibition. We used nucleotide replacement to test whether the effects of \(\text{Na}_3\text{VO}_4 \) could be duplicated by changes in the level of cellular phosphorylation. ATP\(\gamma\)S is an ATP analogue that is readily used by kinases (53–56). When the thiophosphoryl group from ATP\(\gamma\)S is transferred to a protein, the resulting bond is resistant to the action of phosphatases. Therefore, nucleotide substitution of ATP\(\gamma\)S for ATP should mimic the effects of inhibiting intracellular phosphatases. Intracellular dialysis with 5 mM ATP\(\gamma\)S did not alter the amplitude or rate of activation of CRAC currents (Table I). Furthermore, intracellular dialysis with adenylimidodiphosphate tetralithium salt (5 mM), a nonhydrolyzable analogue of ATP that should reduce protein phosphorylation, did not reduce the rate of CRAC channel activation. In addition, the serine phosphatase inhibitors okadaic acid and calyculin did not increase the rate of CRAC channel activation (Table I). Thus, treatments that shift the phosphorylation status of cellular proteins did not duplicate the effects of vanadate on CRAC channels.

Thiol oxidation mediates the effects of vanadate on CRAC current activation

To determine whether the effects of vanadate on CRAC currents are mediated by interaction with cysteine residues, we tested whether the action of \(\text{Na}_3\text{VO}_4 \) could be prevented by the thiol-reducing agent DTT. Fig. 8, A–C, shows that DTT (5 mM; in pipette and bath) prevented the activation of CRAC currents by \(\text{Na}_3\text{VO}_4 \) (10 \(\mu \)M). Comparison of rates of activation shows that DTT can prevent activation of CRAC currents by \(\text{Na}_3\text{VO}_4 \), but not IP\(_3\) (Table I). To test whether thiol oxidation alone could enhance the activation of CRAC channels, we included chloramine T, an agent that selectively oxidizes methionine and cysteine residues (57), in the intracellular solution. The rate of activation of CRAC channels was enhanced by chloramine T with respect to activation during passive store depletion (Fig. 8, C and D, and Table I). These data demonstrate that intracellular dialysis with vanadate or chloramine T produces an increased rate of activation of CRAC currents. Shifting the intracellular redox state to a more reducing environment eliminates the activity of both compounds, suggesting that the effects of vanadate and chloramine T are mediated by thiol oxidation. We further evaluated the hypothesis that chloramine T and vanadate act via the same mechanism. Fig. 9A shows that chloramine T, like pbV(pic) (Fig. 5), produces a gradual rise in [Ca\(^{2+}\)], from baseline to micromolar levels that was inhibited by preinjection with heparin. Thus, Ca\(^{2+}\) signaling induced by either
vanadate or chloramine T requires IP$_3$-dependent intracellular Ca$^{2+}$ release.

Discussion

The data presented above demonstrate that treatment with the peroxovanadium compound, bpV(pic), induces Ca$^{2+}$ release from intracellular stores and Ca$^{2+}$ entry in Jurkat T lymphocytes and RBL cells. Single-cell [Ca$^{2+}$]$_i$ imaging revealed oscillations as well as sustained [Ca$^{2+}$]$_i$ signals when extracellular Ca$^{2+}$ was present. In the absence of extracellular Ca$^{2+}$, Ca$^{2+}$ release transients evoked by vanadate led to complete depletion of the TG-sensitive store. Heparin, which blocks the association of IP$_3$ with its receptor, blocked bpV(pic)-induced Ca$^{2+}$ signaling. Remarkably, intracellular dialysis with bpV(pic) or Na$_3$VO$_4$ activated CRAC channels as rapidly as dialysis with IP$_3$, suggesting that a redox reaction contributes to their mechanism of action. Ca$^{2+}$ signaling induced by bpV(pic) resulted in downstream effects on gene expression by activating the transcription factor, NFAT, without a requirement for costimulation by addition of PMA.

Where does vanadate act to promote Ca$^{2+}$ signaling? In principle, vanadate could produce Ca$^{2+}$ influx directly by activating Ca$^{2+}$ channels in the plasma membrane or indirectly by releasing Ca$^{2+}$ from intracellular stores. The CRAC activation by vanadate was extremely rapid (Table I), suggesting that vanadate bypasses the membrane-delimited, rate-limiting steps in Ca$^{2+}$ influx activation following TCR engagement. However, rapid kinetics alone do not indicate that CRAC channels are directly affected by vanadate. Our data clearly demonstrate that vanadate elicits the release of Ca$^{2+}$ from intracellular stores in both RBL and Jurkat T cells (Fig. 2). Furthermore, heparin inhibited vanadate-induced Ca$^{2+}$ entry in RBL cells (Fig. 5), indicating that Ca$^{2+}$ entry is secondary to intracellular Ca$^{2+}$ store depletion and requires the binding of IP$_3$ to its receptor in the endoplasmic reticulum. Finally, currents activated by vanadate were indistinguishable in every characteristic from those activated by dialysis with IP$_3$ or by passive Ca$^{2+}$ store depletion (Fig. 6). Taken together, our results eliminate the possibility that vanadate produces Ca$^{2+}$ influx by direct activation of CRAC channels or any other Ca$^{2+}$ influx mechanism. These data are consistent with earlier studies showing pervanadate-induced Ca$^{2+}$ entry secondary to store release in single RBL cells (18), but conflict with results in Jurkat T cells suggesting that pervanadate directly activates membrane Ca$^{2+}$ channels (17). The latter conclusion was drawn when a rise in [Ca$^{2+}$]$_i$ was not observed in the absence of extracellular Ca$^{2+}$. However, that study was performed on cell suspensions using a spectrophotometer in which the average Ca$^{2+}$ response from many cells was sampled simultaneously. Our results using video imaging of individual cells show that Ca$^{2+}$ transients occur asynchronously following treatment with bpV(pic). Small transients in the absence of extracellular Ca$^{2+}$ would be missed in population studies (see, for example, Fig. 2B). Therefore, we conclude that vanadate induces Ca$^{2+}$ influx secondary to promoting IP$_3$ production and Ca$^{2+}$ store release, consistent with previous results demonstrating increased PLCy activity and higher cytosolic IP$_3$ levels in intact cells (16, 18).

How does vanadate act chemically inside the cell to promote Ca$^{2+}$ signaling? Vanadate and bpV(pic) are multifunctional reagents that can interact with a number of cellular components in two primary modes of action: 1) mimicking the transition state complex formed by the phosphate ion during phosphoryl transfer reactions; and 2) directly oxidizing cysteine thiols (6). Although Na$_3$VO$_4$ does not shift the total cellular redox state in lymphocytes, which would appear to emphasize the importance of the first mechanism (19), measurements of the total cellular redox state principally assess the status of nonprotein thiols; thus, the selective oxidation of active site cysteines may not be reflected in those experiments. In fact, a number of studies demonstrate that thiol oxidation plays an important role in the mechanism by which vanadate compounds inhibit PTPs. First, inactivation of PTP1B by vanadate compounds is prevented, but not reversed, by the reducing agent DTT (15). Second, pervanadate directly oxidizes the active site cysteine to cysteic acid in PTP1B (15). Third, Na$_3$VO$_4$ and pervanadate oxidize cysteine sulfhydrils (58). Other agents that cause thiol oxidation, such as thimerosal, have been reported to enhance Ca$^{2+}$ release from intracellular stores through direct interaction with the IP$_3$ receptor (59–61). Thimerosal was shown to increase both the single-channel conductance and the mean open time of the reconstituted Ca$^{2+}$ release channel (62). In addition, thimerosal-induced Ca$^{2+}$ influx has been linked to the release of Ca$^{2+}$ from intracellular stores and the activation of CRAC channels in the plasma membrane of RBL-2H3 cells (63). Our data
show that chloramine T mimics and DTT reverses the activation of CRAC channels by Na$_2$VO$_4$ and bpV(pic) (Figs. 8 and 9). Thus, our results favor oxidation as vanadate’s mode of action. The primary target must be more proximal than the IP$_3$ receptor, because heparin blocks bpV(pic)-induced Ca$^{2+}$ signaling. Furthermore, vanadate-induced gene expression did not require the presence of phorbol ester (Fig. 3), suggesting a direct action of vanadate on PLC$_y$ to generate adequate diacylglycerol for PKC stimulation. Additional effects that might potentiate activity of the IP$_3$R activity are not excluded.

Of the myriad of cellular actions demonstrated with vanadium compounds, their insulin-mimetic effects have garnered the most clinical interest. Micromolar concentrations of vanadate and peroxovanadium compounds stimulate hockey uptake, glucose oxidation, and lipogenesis in vivo and in vitro (26–28, 31, 64). Clinical trials demonstrating that sodium metavanadate and vanadyl sulfate improve insulin sensitivity and fasting blood glucose levels have led to suggestions for use of these agents in adjunctive therapy in diabetes (22–25). The clinically applied forms of vanadate have been shown to interconvert within the cell to the +5 oxidation state and to pervanadate depending upon the intracellular redox state (reviewed in Refs. 10, 11, and 65). Thus, the effects of vanadate on Ca$^{2+}$ signaling may contribute to the insulin-mimetic properties of these compounds. Unfortunately, beyond their beneficial metabolic effects, long term mitogenic and potentially tumorigenic effects of vanadium compounds must be considered (reviewed in Ref. 60). When applied to lymphocytes at clinically relevant concentrations, vanadium compounds mimic receptor-mediated activation. Our data show that bpV(pic) activates NF-AT-dependent gene expression in Jurkat T cells. Previous reports have demonstrated that peroxovanadium compounds activate c-Jun and c-Fos and induce nuclear translocation of NF-$kappa$B in lymphocytes (17, 19). Recently, peroxovanadium compounds were shown to stimulate HIV-1 production in latently infected cell lines in conjunction with T cell activation (20). Thus, studies of the mechanisms by which vanadium compounds interact with lymphocytes may have relevance to its proposed clinical application and yield new approaches to other diseases of the immune system.

Acknowledgments

We appreciate the expert technical assistance of Dr. Luette Forrest during this project. The use of the Optical Biology Shared Resource of the Chao Family Comprehensive Cancer Center is gratefully acknowledged.

References

